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Abstract—Number of spikes, spikelets per spike, number of
spikes per square meter are some of the important metrics for
plant breeders and researchers in predicting wheat crop yield.
Evaluating the crop yield based on wheat ears counting is still
done manually which is labor-intensive, tedious and costly task.
Thus, there is a significant need of developing a real-time wheat
spikes/ears counting system for plant breeders for effective and
efficient crop yield predictions. In this paper, we proposed two
deep learning based methods Faster R-CNN and EfficientDet
for accurate and computationally efficient localization and
counting of wheat spikes/ears in digital images taken using some
high-throughput phenotyping techniques under natural field
conditions. We used Faster R-CNN with Resnet50 as backbone
architecture which produced an overall accuracy 88.7% on
the test images. We also used the recent state of the art
models EfficientDet-D5 and EfficientDet-D7 having a backbone
architectures EfficientNet-B5 and EfficientNet-B7 respectively.
The EfficientDet-D5 model produce an accuracy 92.7% on the
test images and EfficientDet-D7 produce an accuracy 93.6%.

Index Terms—Wheat Spikes, Deep Learning, Faster R-CNN,
EfficientDet

I. INTRODUCTION

One of the most important and widely utilized crop species
which are consumed daily by the public. 762.7 million tons
of annual wheat production was recorded by [2] in 2020. The
Wheat is cultivated every year in around 215 million hectares
and the global trade of wheat is estimated nearly 50 billion
US Dollar every year [1]. It is estimated that nearly 750.1
million tons of wheat is consumed every year globally [2].
Every coming year the demand of grain is increasing and
at the same time extreme weather situations and variation
in climate changes increases the risk of uncertain supply of
grains. Complex, multivariate, and unpredictable agricultural
environments need to be better studied in order to solve these
types of challenges by monitoring, measuring/analyzing and
constantly evaluating different physical aspects and phenom-
ena. This will help researchers and plant breeders to know
and recognize better-yielding and more stress-tolerant plant
species.
In recent studies, biologists and breeders rely more on high
performance phenotyping techniques to measure the quantita-
tive assessment of crop canopy characteristics [8]. Constraints
in plant phenotyping are widely acknowledged as a vital

limitation in genetic and plant breeding studies [5], [35].
Initial field-based high-throughput phenotyping technologies
was based on direct sensor and image measurements to derive
important morphological properties of interest like vegetation
indexes from spectral reflectance data [5]. This first genera-
tion of High Throughput Phenotyping, while providing great
intuition into plant processes, but it is limited in the evalua-
tion of complex characteristics such as plant morphology or
growth stage that cannot be assessed by a linear estimation
of just pixel data. Although these complex morphological and
developmental characteristics are easily distinguished by an
eye, it is difficult to evaluate these phenotypes using high-
throughput platforms, especially under field conditions used
in plant breeding programs.
Using a method comparable to [24], most spikelet and ear
counting is performed by hand to date, which relates crop
yield to spike and spikelet characteristics without the use of
image analysis. In several research problems related to plant
phenotyping, conventional Machine Learning methods have
been used widely. ML models including SVM, decision trees,
Bayesian, and instance base model has been used in crop yield
prediction, Disease Detection, Weed Detection, plant species
detection, and in crop quality [17]. Some ML based techniques
exist to automatically detect heading and flowering in wheat
[32] to distinguish growth stages in field-grown wheat, a bag-
of-visual-words method is used. Low level characteristics are
collected using the SIFT algorithm. Finally, to classify the
growth levels in plants, the classification of support vector ma-
chines is used.Symptoms of yellow rust disease and nitrogen
stress were examined by using hyperspectral features from a
five waveband of 20nm hyperspectral imaging system located
on the ground [27]. Crop growth characteristics is measured
based on-line multilayer soil data of satellite imagery, an
unsupervised learning algorithm was used and field variations
in wheat yield were predicted [26].
However, Smart agriculture and plant phenotyping have now
progressed into the ’big data’ era, where massive data is
gathered from open field trials, indoor plant phenotyping using
advanced platforms such as UAV, satellite imagery, grounded
robot vehicles, gantries, etc. With the availability of large
amount of data and recent high-end computing power of
hardware [15]. Deep learning models are more preferred as its



performance increases with the increase in the amounts of data
we provide to the model. This is one of the main reason due
to which, deep learning approaches took over the traditional
machine learning approaches. Secondly, Deep learning sur-
pass the need of manually selecting and defining handcrafted
features [15]. Instead deep learning approaches perform opti-
mization in a complete end-to-end way by mapping input data
samples to outputs targets. Deep Learning has been applied to
hundreds of problems over the past few years. Some of the
greatest contributions of deep learning have been in the area of
computer vision. It focuses on the interpretation of images and
videos, and deals with tasks such as classification of objects,
tracking, identification, and segmentation. Deep Learning has
outperformed previous approaches used to address specific
issues in many fields [25]. Deep Learning algorithms derive
meaningful abstract representations of raw data with the use
of a hierarchical multi-level learning approach, where more
abstract and complex representations are learned at a higher
level based on less abstract concepts and representations at the
lower level(s) of the learning hierarchy [15]. The models learn
to perform classification and detection directly using data in
the form of images, text, multi/ hyperspectral data, sound etc.
The detection of wheat heads from images in itself is a
challenging task as it involves several factors to be taken into
account like the observational conditions, genotypic differ-
ences and development stages of the plant. Wheat head density
(the number of wheat heads per unit ground area) is a major
yield component, but because the process of evaluation of
this parameter is still manual and labor-intensive, measurement
errors of around 10% can be observed. [24] [8] Thus, develop-
ing automated image-based methods that can bring this error
down is important so that breeders can manipulate the balance
between yield parameters in their breeding selections. In this
project, we use the Global Wheat Detection Dataset (GWHD)
[3] which contains images taken at 90 degree from above of
a wheat field with the wheat head annotated using bounding
boxes. These images contains occlusions, overlapped wheat
ears, blurred background etc which makes it a perfect dataset
for training any deep learning model. We used two different
deep learning models, Faster-RCNN [31] and EfficientDet [34]
for detection of wheat ears and trained them with Global wheat
head dataset. The main objective of this study was to build a
data driven efficient system which will detect the wheat ears
with good performance and accuracy. We also had another
unlabelled dataset from NMBU which contained at least 5000
high-resolution RGB raw images during the start of the project.
We used a subset of those images in the testing phase to see
how our model performs for those images.

The rest of the paper is organized as follows. It will start
with the overview of object detection in general and then it
will discuss about the previous research work done in wheat
spikes/ears phenotyping using deep learning. It is followed by
our proposed deep learning models, data preprocessing, model
architecture, training, and evaluation methods. Finally, in the
last section, we present our results based on our trained models
before concluding in the last section.

II. BACKGROUND

The purpose of generic object detection is to locate and
identify current objects in any single image and to mark them
with rectangular bounding boxes to demonstrate the confi-
dences of existence. Detection of objects is a method involving
classification as well as localization. There are many different
object detection models, such as Faster R-CNN, Single shot
detectors (SSD) [22], RetinaNet [19], YOLO [30], and the
recent state of the art method EfficientDet. These models
have different ways to support the detection process, and the
differences between how these models working impacts on
the performance. Models in the R-CNN [7] family are all
region based. The detection happens in two stages. First, the
model proposes a set of regions of interests by select search
or regional proposal network. The proposed regions are sparse
as the potential bounding box candidates can be infinite. Then
a classifier only processes the region candidates. The second
approach skips the region proposal stage and runs detection
directly over a dense sampling of possible locations. In order
to solve the critical problem of detecting wheat ears in open
field environments researchers have already benefited by using
deep learning detection methods.
[24] proposed two different approaches in his study, either us-
ing the Faster R-CNN object detector or with the TasselNet lo-
cal count regression network for detection of wheat ears. Both
approaches performed very well giving rRMSE approximately
6%. Faster-RCNN was however, more robust when applied to a
dataset collected at a later stage with ears and context showing
a different feature due to the higher maturity of the plants. [29]
used a stacked hourglass encoder and decoder network, with
fully-connected layers and residual blocks for the detection
of spikes and spikelets. The architecture of the network was
based upon an encoding/decoding structure, in which a series
of convolutional operations and spatial downsampling begin
by computing a fixed-size feature representation of the image.
This feature space is then upsampled back to the original res-
olution, while lower-level features are re-combined in stages
[29].The heatmap output at the end of each hourglass is used to
calculate a loss, which guides training of the network. Spikes
are located with an F1 score of 0.83 @ 0.1 and 0.89 @ 0.2,
spikelets are located with an F1 of 0.88 @ 0.05 and 0.96 @ 0.1
[29]. [8]adapt, train and apply a variant of CNN, hereinafter
referred to as Region-based Convolutional Neural Networks
(R-CNN), to accurately count wheat spikes in images acquired
using land-based RGB imaging platform. Three different types
of dataset (Green spike and Yellow Canopy), (Green Spike
and Green Canopy), (Yellow Spike and Yellow canopy) were
chosen for training the model individually. The datasets were
built according to the difference in color of spikes and the
wheat canopy in order to get a considerable amount of contrast
between wheat spikes and other part of the canopy. The best
performing model produced an average accuracy 93.4% and
F1 score of 0.95, respectively, when tested on 20 images [8].
Several studies have developed methods for wheat head de-
tection from high-resolution RGB imagery based on machine



and deep learning algorithms. However, these methods have
generally been calibrated and validated on limited datasets [3].
Studies like [8], [24], [29] Perform detection on limited set of
wheat ears data. [29] perform detection using ACID dataset
having 520 images. [8] Perform detection on wheat image
dataset having 305 images taken from ground-based vehicle
and similarly [24] used 236 high resolution images to conduct
his study. High variability in observational conditions, geno-
typic differences, development stages, and head orientation
makes wheat head detection a challenge for computer vision.
Further, possible blurring due to motion or wind and overlap
between heads for dense populations make this task even more
complex [3]. A large, diverse, and well-labelled dataset is
necessary to effectively detect the wheat spikes in the wheat
images. Recently Through a joint international collaborative
effort, A massive dataset is built called Global Wheat Head
Detection. It contains 4700 high resolution RGB images and
190000 labelled wheat heads collected from several countries
around the world at different growth stages with a wide range
of genotypes [3]. The GWHD dataset is publicly available
at http://www.globalwheat.com/and aimed at developing and
benchmarking methods for wheat head detection.

III. CONTROLLED VS UNCONTROLLED ENVIRONMENT

Previous Research about image-based wheat phenotyping
was performed in two types of environments. In Controlled
Environment the phenotyping was done specifically in small
pot indoor wheat plots, glass, and greenhouses [3]. Here [16]
the growth of a wheat plants is measured for a month by
putting the wheat plants in an individual small pots to measure
the detailed morphological properties of the wheat plant. The
purpose of growing wheat plant in the pot was to reduce
the overlapping of spikes. On the other hand, for measuring
detailed geometric properties, such as the numbers of awns
and wheat ears of plants. The plants were grown in a small
pot in a glasshouse [17]. Some studies were carried out using
plants grown in large indoor bins of size [120 x 80] cm, 96
plants are grown in a raster with 10 rows of eight plants in each
bin [18] The plants are grown closer to field-like conditions
and not individually in pots, but the analysis was still carried
out in a regulated environment. In this study [19] wheat plants
were grown in pots in the climate controlled greenhouse. A
uniform background was maintained to increase the accuracy
of separation between background and plant regions.

However, analysis of the growth behavior and physical char-
acteristics of single plants grown in small pots is not generally
sufficient [20]. One major factor explaining this difference is
that under field conditions, plants are subjected to additional
pressures, such as competition with neighbors and light source,
weeds, water, and nutrients. In Uncontrolled environment, the
study of image-based wheat phenotyping is generally per-
formed by considering the realistic environmental conditions
where occlusion, overlap, lighting conditions, shadows, and
noise etc. is present. Plants quantitative properties are analyzed
and measured under realistic environmental conditions. [3]
Performed study in uncontrolled environment on 10 wheat

varieties subjected to three different fertilizers to analyze it
effect on the wheat varieties. In this study [21] the experiment
was conducted in two open fields. Six wheat varieties were
sown with plot sized of (3 x 1 and 2 x 1)m and nitrogen
treatment were applied to analyze their effect. 12 wheat plots
of winter wheat whose size was 5 x 2.4m was sown using
three different target densities. Same amount of fertilizer was
applied to each target to the traits of wheat species [22]. A trial
of 120 microplots of 2.0mwidth by 10m long was considered
to study the irrigation, nitrogen fertilization and water stress
[23].

IV. PROPOSED MODELS

In this paper, Along with Faster R-CNN for detecting wheat
ears, we also used the recently published state of the art deep
learning model purposed by google brain researchers called
EfficientDet which has a robust backbone architecture called
EfficientNet. [33].

A. Faster R-CNN

Faster R-CNN, developed by Ren et al [31] is an object
detection network composed of a feature extraction network
which is typically a pre-trained CNN. It consists of two
networks: a regional proposal network(RPN) for generating
region proposals and a convolutional network which takes the
proposed regions to detect objects almost in real-time. Thus, in
addition to convolutional neural network, Faster R-CNN has a
RPN which is inserted after the last convolutional layer making
it different from its predecessors. RPN efficiently predicts
region proposals with a wide range of scales and aspect ratios.

Fig. 1. Basic Architecture of a Faster R-CNN detector

Faster R-CNN is a detector that is learned end to end
unlike the earlier variants of the region based detectors that



relied on selective search. [36] This is important because the
quality of the predictions depend upon the quality of the region
proposals. Due to the fast processing capability and a better
recognition rate of Faster R-CNN than other region based
models, we chose it as one of the methods to detect wheat
heads. The basic architecture of a Faster R-CNN detector is
represented in Fig 1.

The input to the network are images of size Height x Width
x Depth tensors, which are usually passed through a pre-
trained CNN, also called backbone, producing a convolutional
feature map. In deeplearning, this process is usually achieved
by a process called transfer learning, where the weights of a
model trained in a huge dataset are used for training a classifier
on a smaller dataset.

a) Backbone: The backbone component of Faster R-
CNN is the part where transfer learning comes into play. In
other words, we use a pretrained Resnet-50 [9] architecture
trained on ImageNet dataset for the feature extraction [14].
The output of this component is a set of feature maps, which
are learned using a CNN instead of using selective search.
These network architectures have been getting better over the
years, with increasing number of layers, as well as the number
of parameters. MobileNet [10], for example has approximately
3.3M parameters while Resnet50(50 layers) has approximately
23M parameters. In recent years, newer architectures like
DenseNet [11] are also focusing on improving results while
lowering the number of parameters. In our case, we used the
Resnet50 architecture as the backbone.

Fig. 2. Comparison of test time among R-CNN models

b) Anchors: Once we get the feature map from the
backbone network from the above step, we need to find the
regions of interest for classification. This is where anchors
come into play. They are used to solve the variable length
problem: the idea that there could be bounding boxes of
variable shapes and aspect ratios in our images. In this step,
we choose a set of anchors as a set of sizes(e.g. 64px, 128px,
256px) and a set of width to height ratios(e.g. 0.5, 1, 1.5). We
then finally use all the possible combinations of these sizes
and ratios before passing them to the RPN component of the
system. For a convolutional feature map of a size W x H,
there are WHk anchors in total. [31] In our setup, we used

anchors of the following settings, as provided by the Pytorch
[28] official implementation of Faster R-CNN:

sizes = (32px, 64px, 128px, 256px, 512px)

aspectratios = (0.5, 1.0, 2.0)

c) Region Proposal Network: After the regions of differ-
ent shapes and sizes are received in the RPN, the next step is
to pick the bounding boxes that are actually the correct ones.

Fig. 3. Region Proposal Network in Faster R-CNN

Fig. 2. shows a basic implementation of the region proposal
network. Starting with the convolutional feature map, at the
last layer of the CNN, a 3x3 sliding window moves across
the feature map and maps it to a lower dimension (e.g.
256-d as shown in the figure). Then, for each sliding-window
location, an anchor generator is employed that generates all
the possible regions based on the aspect ratios and sizes, as
mentioned in the section above. Finally, each region proposal
contains an ’objectness’ score for the given region, as well as
4 coordinates representing the bounding box location of that
region. For each anchor box, the objectness score is checked
against a threshold. If the objectness is above the threshold,
the box’s coordinates get passed forward, else gets discarded.

d) Identify Object Label and Position: Once we have the
filtered region proposals, we feed them into another network
that resembles a Fast R-CNN. Adding a pooling layer in
addition to some fully-connected layers, a softmax classifier is
used to classify the objects into N classes in one go. Bounding
box-regressors are used to tighten the bounding box of the
object. In our case, we just have two classes: one the wheat
head, and another the background.

B. EfficientDet

EffificientDet consists of three parts. As shown in Figure 4,
The first part is the pre-trained EfficientNet as the backbone
architecture of the model. The second part is BiFPN, which
do the top-down and bottom-up feature fusion multiple times
for the output characteristic of Level 3-7 in EfficientNet. The
third part is the classification and detection box prediction
network, to regress and classify the wheat ear frame. In deep



Fig. 4. Architecture of EfficientDet

learning paradigm, models are scaled with one main goal
of increasing the model accuracy. For example the ResNet
architecture purposed by [9] can be scaled up to ResNet-
200 from ResNet-18 base line architecture. Similarly, in this
study [13] they used parallelism mechanism where different
chain of layers were pipe-lined on separate accelerators. which
enable of scaling a variety of different networks to huge
sizes efficiently. Using this technique, they train AmoebaNet
with 557 million parameters on ImageNet [14] dataset and
achieve a top-1 accuracy of 84.4% by making the AmoebaNet
baseline architecture 4 times larger. The features extraction
model (ConvNets) can be scaled by increasing the model
layers (depth) as mentioned in this study [9] or as discussed in
this study [38] where they decrease the network model depth
by reducing the number of layers and increases the model
width. Some of the research is also done on by scaling the
model based on spatial resolution or size of the image as
discussed in this study [12].

Fig. 5. EfficientNet Compound Scaling

Google Research, Brain Team recently proposed a new method
of compound scaling where the network model called Ef-
ficientNet which can be scaled simultaneously on all three
dimensions height, width and resolution of the image while
staying within the constraints of target memory and target
FLOPs as shown in figure 5. EfficientNets outperform most of
the widely used convolutional neural networks. EfficientNet-
B7 surpasses the best existing GPipe accuracy [13], but utiliz-
ing 8.4 times fewer parameters and running 6.1 times faster on
inference [33]. Compared to the widely used ResNet-50 [9],
EfficientNet-B4 attain the top-1 accuracy from 76.3% to 83.0%
with similar floating point operation per second(FLOPS) [33].
Besides ImageNet, EfficientNets also performed well on other

dataset as well and achieve state of-the-art accuracy in most of
the widely used datasets, while restricting the parameters by
up to 21 times than existing Convolutional neural networks
[33]. Due to all these results, we chose efficientNet as our
backbone feature extractor model.
Feature fusion seeks to combine representations of a given
image at different resolutions. Typically, the feature fusion
networks uses the last few feature layers from the CNN. The
Conventional and mostly used top down FPN is inherently
limited due to the flow of information in only one-way [18].
PANet [21] address this issued by adding an extra bottom-
up path information flow, as shown in Figure 6(b). Recently,
NAS-FPN [6] employs neural architecture search to search
for better cross-scale feature network topology but it requires
thousands of GPU hours during search and the found network
is irregular and difficult to interpret or modify, as shown in
Figure 6(c). For this part the EfficientDet proposed BiFPN
feature fusion, as shown in figure 6(d). which is a multi-scale
feature fusion mechanism of combining features at different
layers of the backbone architecture. Here BIFPN do the top-
down and bottom-up feature fusion multiple times using the
output features of Level 3 to Level 7 from EfficientNet [34].

Fig. 6. Feature network design – (a) FPN introduces a top-down pathway
to fuse multi-scale features from level 3 to 7 (P3 - P7); (b) PANet adds
an additional bottom-up pathway on top of FPN; (c) NAS-FPN use neural
architecture search to find an irregular feature network topology and then
repeatedly apply the same block; (d) BiFPN top-down and-bottom up approach
with better accuracy and efficiency trade-offs.

For optimization, the BiFPN first discard all those feature
maps which has only one input. The reason for those feature
map is that it contribute less to the overall fusion of different
features. Switch connection is built between output node and
input feature network layers of the same level for fusing
more features to the end feature node with out increasing
the complexity and cost. According to the authors they are
considering each BiFPN (top-down and bottom-up) path as
one feature network layer and it can be used multiple times
for more robust and high level feature fusion.
A common practice of fusing features with different resolu-
tions is first resizing the features and then summing them all
together. Pyramid attention network [16] introduces Global
Attention upsampling module for exploiting high-level feature
map to guide low-level features recovering pixel localization
similar to this study [6]. All previous methods treat all input
features equally without distinction. Different input features
are at different resolutions, they usually contribute to the
output feature unequally. For network to learn the importance



of each input feature map they [34] assigned additional weight
to the input. And come up with three different weighted fusion
approaches Unbounded Fusion, Softmax based fusion, Fast
normalized fusion. The third part is the classification and
detection box prediction network, to regress and classify the
wheat ear from the images. Based on the above amazing
improvement they develop a group of EfficeintDet models with
the aim of optimizing both accuracy and efficiency and meet
a wide range of resource constraints. With single model and
single-scale, EfficientDet-D7 achieves state of-the-art 55.1 AP
on COCO test-dev with 77M parameters and 410B FLOPs1 ,
being 4x – 9x smaller and using 13x – 42x fewer FLOPs than
previous detectors [34].

V. OUR WORK

To perform the wheat head detection and counting, we
followed three steps: starting with the exploratory data anal-
ysis and preprocessing, followed by training the deeplearning
models, and finally using several evaluation metrics to evaluate
the results.

A. Data Analysis and Preprocessing

In detecting objects of interest, such as wheat spikes, am-
bient noise poses significant challenges for computer vision-
based techniques. Some challenges include the following: The
movements of plants and/or the stability of handheld cameras
are likely to cause blurred images.
Due to natural conditions and light variations in the field, dark
shadows or sharp brightness can appear in images.
Overlaps between the ears due to the floppy attitude of the
ears can also give rise to additional difficulties especially with
the presence of awns in certain cultivars.
Over development phases, spikes in various varieties change
dramatically, as spikes display no correlation between the early
and later growth phases.
Preprocessing is a preliminary phase in the analysis of images,
which helps to arrange data properties in order to enable
subsequent steps and also to achieve fair final results. At
first, the GWHD dataset was analysed. The dataset is gather
from several parts of the world, with a total of 4698 squared
patches extracted from the 2219 original high-resolution RGB
images. It contains 188,495 labelled heads with an average of
20 to 60 heads per image. There are also around 100 images
that don’t contain any heads to represent actual capturing
conditions and make the task more difficult. We tried several
data augmentation techniques to improve the performance
of our models. In addition to the usual data augmentation
methods employed in normal computer vision tasks along
with other transform methods, the ones used in our approach
were horizontal/vertical flips, cropping and resizing, change
to gray, cutout [4], cutmix [37], hue/saturation value changes,
and brightness/contrast changes. The data augmentation and
image preprocessing will help in producing more samples
and variations and help in training the models to decrease
overfitting and increase the generalization of our models.

B. Training

1) Faster R-CNN: For training, we used a normal simple
random sampling from the dataset we obtained from the above
step. We used 80%-20% splitting for training set and validation
data. Initially, we started from the pre-trained model on the
pedestrian images and did some fine-tuning to adapt to our
use case.

We studied the results of the model using a Resnet50 back-
bone, learning rate of 0.005 and CosineAnnealing scheduler
[23] with Stochastic Gradient Descent (SGD) as the optimizer.
The main reason behind using a cosine function for the
learning function is the idea that for each batch of the SGD,
the network should get very close to the global minimum value
for the loss, means we don’t want the algorithm to overshoot
and the learning rate should get smaller helping the loss value
settle to some point. Cosine annealing decreases the learning
rate following the cosine function and helps in making this
global minimum stable.

We also tried the Adam optimizer and tried to see how it
performs in comparison to SGD. Using these parameters, we
trained the model for 40 epochs with the batch size of 8.

The results are represented in the plots below.

Fig. 7. Faster R-CNN training and evaluation with SGD

Fig. 8. Faster R-CNN training and evaluation with Adam



2) EfficientDet: EfficientDet- D5 and EfficientDet-D7 were
used as our detection models for detecting wheat ears effec-
tively. We used wheat ears GWHD dataset with images of
15 different wheat varieties captured under different environ-
ment conditions. We utilized all those images for training
and validation of the model. In this study, EffificientDet-
D5 and EffificientDet-D7 were trained respectively. We used
Pytorch framework version 1.6.0 and Python 3.7. we use
the CUDA/10.0.130 version for graphics cards. we trained
our model using Idun high performance computing cluster at
NTNU Trondheim using only one GPU which was NIVIDIA
V100 Tensor Core. The images with input size of 512x512
was introduced to the model and the model is trained for 40
Epochs. The Average loss error on both of the model is saved
and its shown in the below figures 9, 10.

Fig. 9. EfficientDet-D5 training and loss error

Fig. 10. Efficient-D7 training and loss error

VI. EVALUATION AND RESULTS

For the evaluation of the results, we used the training
error along with the mean average precision (mAP) from the
standard MS COCO metrics [20] for the validation set. The
mAP values relies on the Intersection over Union(IoU) values.
The IoU value is the area of intersection between the actual
bounding box divided by their union’s area. A True Positive
prediction is the one with IoU > threshold, whereas False
Positive refers to one with IoU < threshold.

IoU =
Area of Overlap
Area of Union

(1)

Similarly, we used the regular precision, recall, and accuracy
for the test set.

1) Precision and Recall: Precision is the ratio between true
positives and all positives, whereas recall is the measure of a
model identifying true positives.

Recall =
TP

TP + FN
=

TP
# ground truths

(2)

Precision =
TP

TP + FP
=

TP
# predictions

(3)

2) Accuracy: Accuracy, the simplest of the metrics, is the
ratio of total number of correct predictions to the number of
predictions.

Accuracy =
TP + TN

TP + FP + FP + FN
(4)

We used 10 test images that were not used during the train-
ing or evaluation phase and calculated the above metrics.We
achieved overall 87.4% accuracy using Faster-RCNN with
SGD optimizer and 88.7% accuracy using Adam optimizer.
For EfficeintDet Models, The EfficientDet-D5 achieved overall
accuracy of 92.7% . EfficientDet-D7 produce better results
than Faster-RCNN with Resnet as its backbone architec-
ture and EfficientDet-D5.The EfficeintDet-D7 model achieved
93.6% accuracy on the test images. The results are represented
in tables below.

TABLE I
FASTER R-CNN WITH SGD OPTIMIZER ON TEST DATA

ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 1.0 0.89 88.9%
51b3e36ab 27 29 0.86 0.93 80.6%
51f1be19e 18 18 1.0 1.0 100.0%
53f253011 31 29 1.0 0.94 93.5%
348a992bb 37 36 0.97 0.95 92.1%
796707dd7 31 23 1.0 0.74 74.2%
aac893a91 24 21 0.95 0.83 80.0%
cb8d261a3 24 21 1.0 0.88 87.5%
cc3532ff6 26 29 0.9 1.0 89.7%
f5a1f0358 28 31 0.9 1.0 90.3%

Total 273 261 0.95 0.91 87.4%

TABLE II
FASTER R-CNN WITH ADAM OPTIMIZER ON TEST DATA

ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 1.0 0.89 88.9%
51b3e36ab 27 29 0.9 0.96 86.7%
51f1be19e 18 18 1.0 1.0 100.0%
53f253011 31 29 1.0 0.94 93.5%
348a992bb 37 36 0.97 0.95 92.1%
796707dd7 31 25 1.0 0.81 80.6%
aac893a91 24 21 0.95 0.83 80.0%
cb8d261a3 24 21 1.0 0.88 87.5%
cc3532ff6 26 29 0.9 1.0 89.7%
f5a1f0358 28 31 0.9 1.0 90.3%

Total 273 263 0.96 0.92 88.7%

GT: The number of ground truth wheat heads



TABLE III
EFFICIENTDET-D5 RESULTS ON TEST DATA

Precision, Recall and Accuracy of the EfficientDet-D5 Model
ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 0.88 0.88 88%
53f253011 31 30 0.96 0.96 96%
51b3e36ab 27 25 0.92 0.92 92%
51f1be19e 18 18 1.0 1.0 100%
348a992bb 37 38 0.97 1.0 97%
796707dd7 31 26 0.83 0.83 83%
aac893a91 24 19 0.79 0.79 79%
cb8d261a3 24 24 1.0 1.0 100%
cc3532ff6 26 25 0.92 0.96 92%
f5a1f0358 28 28 1.0 1.0 100%
Total&Results 273 257 92.7% 93.4% 92.7%

TABLE IV
EFFICIENTDET-D7 RESULTS ON TEST DATA

Precision, Recall and Accuracy of the EfficientDet-D7 Model
ImageID GT Detected Precision Recall Accuracy
2fd875eaa 27 24 0.88 0.88 88%
53f253011 31 30 0.96 0.96 96%
51b3e36ab 27 25 0.92 0.92 92%
51f1be19e 18 18 1.0 1.0 100%
348a992bb 37 35 0.94 0.94 94%
796707dd7 31 26 0.83 0.83 83%
aac893a91 24 21 0.87 0.87 87%
cb8d261a3 24 24 1.0 1.0 100%
cc3532ff6 26 25 0.96 0.96 96%
f5a1f0358 28 28 1.0 1.0 100%
Total&Results 273 256 93.6% 93.6% 93.6%

VII. CONCLUSION

Agriculture plays a critical role in the global economy. Pressure on
the agricultural system will increase with the continuing expansion of the
human population. Digital Agriculture or precision farming, have arisen as
new scientific fields that use data intense approaches to drive agricultural
productivity while minimizing its environmental impact. The data generated
in modern agricultural operations is provided by a variety of different sensors
that enable researcher in better understanding of the morphological properties
of the crops which leads to more accurate and faster crop yield predictions.
In this study we use a data driven deep learning approach for accurate
identification and counting of wheat ears/spikes in digital images taken in open
field environment. We used two variants of Faster-RCNN, EfficientDet-D5 and
EfficientDet-D7 for detecting the target ears/spikes in the wheat crop images
where we achieved an accuracy of 88.7% using Faster-RCNN, 92.7% accuracy
on EfficientDet-D5 and 93.6% accuracy on efficientDet-D7 respectively. In
future the proposed models accuracy can be improved by training these models
using high resolutions like 1280x1280 and 1536x1536 instead of images with
512x512 resolutions because these models EfficientDet-D5 and EfficientDet-
D7 are pre-trained on the above respective resolutions. The other factor which
will improve the accuracy of the models is to introduce less occlusions and
background blur in the images.
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